About Alfred Wegener
Alfred Lothar Wegener (November 1, 1880 – November 1930) was a German polar researcher, geophysicist and meteorologist.
During his lifetime he was primarily known for his achievements in meteorology and as a pioneer of polar research, but today he is most remembered for advancing the theory of continental drift (Kontinentalverschiebung) in 1912, which hypothesized that the continents were slowly drifting around the Earth. His hypothesis was controversial and not widely accepted until the 1950s, when numerous discoveries such as palaeomagnetism provided strong support for continental drift, and thereby a substantial basis for today's model of Plate tectonics. Wegener was involved in several expeditions to Greenland to study polar air circulation before the existence of the jet stream was accepted. Expedition participants made many meteorological observations and achieved the first-ever overwintering on the inland Greenland ice sheet as well as the first-ever boring of ice cores on a moving Arctic glacier.
Biography
On November 1, 1880, Alfred Wegener was born in Berlin as the youngest of five children in a clergyman's family. His father, Richard Wegener, was a theologian and teacher of classical languages at the Berlinisches Gymnasium zum Grauen Kloster. In 1886 his family purchased a former manor house near Rheinsberg, which they used as a vacation home. Today there is an Alfred Wegener Memorial site and tourist information office in a nearby building that was once the local schoolhouse.
Wegener attended school at the Köllnische Gymnasium on Wallstrasse in Berlin (a fact which is memorialized on a plaque on this protected building, now a school of music), graduating as the best in his class. Afterward he studied Physics, meteorology and Astronomy in Berlin, Heidelberg and Innsbruck. From 1902 to 1903 during his studies he was an assistant at the Urania astronomical observatory. He obtained a doctorate in astronomy in 1905 based on a dissertation written under the supervision of Julius Bauschinger at Friedrich Wilhelms University (today Humboldt University), Berlin. Wegener had always maintained a strong interest in the developing fields of meteorology and climatology and his studies afterwards focused on these disciplines.
In 1905 Wegener became an assistant at the Aeronautischen Observatorium Lindenberg near Beeskow. He worked there with his brother Kurt, two years his senior, who was likewise a scientist with an interest in meteorology and polar research. The two pioneered the use of weather balloons to track air masses. On a balloon ascent undertaken to carry out meteorological investigations and to test a celestial navigation method using a particular type of quadrant (“Libellenquadrant”), the Wegener brothers set a new record for a continuous balloon flight, remaining aloft 52.5 hours from April 5–7, 1906.
In that same year 1906, Wegener participated in the first of his four Greenland expeditions, later regarding this experience as marking a decisive turning point in his life. The expedition was led by the Dane Ludvig Mylius-Erichsen and charged with studying the last unknown portion of the northeastern coast of Greenland. During the expedition Wegener constructed the first meteorological station in Greenland near Danmarkshavn, where he launched kites and tethered balloons to make meteorological measurements in an Arctic climatic zone. Here Wegener also made his first acquaintance with death in a wilderness of ice when the expedition leader and two of his colleagues died on an exploratory trip undertaken with sled dogs.
After his return in 1908 and until World War I, Wegener was a lecturer in meteorology, applied astronomy and cosmic physics at the University of Marburg. His students and colleagues in Marburg particularly valued his ability to clearly and understandably explain even complex topics and current research findings without sacrificing precision. His lectures formed the basis of what was to become a standard textbook in meteorology, first written In 1909/1910: Thermodynamik der Atmosphäre (Thermodynamics of the Atmosphere), in which he incorporated many of the results of the Greenland expedition.
On 6 January 1912 he publicized his first thoughts about continental drift in a lecture at a session of the Geologischen Vereinigung at the Senckenberg-Museum, Frankfurt am Main and in three articles in the journal Petermanns Geographischen Mitteilungen.
Alfred Lothar Wegener (November 1, 1880 – November 1930) was a German polar researcher, geophysicist and meteorologist.
During his lifetime he was primarily known for his achievements in meteorology and as a pioneer of polar research, but today he is most remembered for advancing the theory of continental drift (Kontinentalverschiebung) in 1912, which hypothesized that the continents were slowly drifting around the Earth. His hypothesis was controversial and not widely accepted until the 1950s, when numerous discoveries such as palaeomagnetism provided strong support for continental drift, and thereby a substantial basis for today's model of Plate tectonics. Wegener was involved in several expeditions to Greenland to study polar air circulation before the existence of the jet stream was accepted. Expedition participants made many meteorological observations and achieved the first-ever overwintering on the inland Greenland ice sheet as well as the first-ever boring of ice cores on a moving Arctic glacier.
Biography
On November 1, 1880, Alfred Wegener was born in Berlin as the youngest of five children in a clergyman's family. His father, Richard Wegener, was a theologian and teacher of classical languages at the Berlinisches Gymnasium zum Grauen Kloster. In 1886 his family purchased a former manor house near Rheinsberg, which they used as a vacation home. Today there is an Alfred Wegener Memorial site and tourist information office in a nearby building that was once the local schoolhouse.
Wegener attended school at the Köllnische Gymnasium on Wallstrasse in Berlin (a fact which is memorialized on a plaque on this protected building, now a school of music), graduating as the best in his class. Afterward he studied Physics, meteorology and Astronomy in Berlin, Heidelberg and Innsbruck. From 1902 to 1903 during his studies he was an assistant at the Urania astronomical observatory. He obtained a doctorate in astronomy in 1905 based on a dissertation written under the supervision of Julius Bauschinger at Friedrich Wilhelms University (today Humboldt University), Berlin. Wegener had always maintained a strong interest in the developing fields of meteorology and climatology and his studies afterwards focused on these disciplines.
In 1905 Wegener became an assistant at the Aeronautischen Observatorium Lindenberg near Beeskow. He worked there with his brother Kurt, two years his senior, who was likewise a scientist with an interest in meteorology and polar research. The two pioneered the use of weather balloons to track air masses. On a balloon ascent undertaken to carry out meteorological investigations and to test a celestial navigation method using a particular type of quadrant (“Libellenquadrant”), the Wegener brothers set a new record for a continuous balloon flight, remaining aloft 52.5 hours from April 5–7, 1906.
In that same year 1906, Wegener participated in the first of his four Greenland expeditions, later regarding this experience as marking a decisive turning point in his life. The expedition was led by the Dane Ludvig Mylius-Erichsen and charged with studying the last unknown portion of the northeastern coast of Greenland. During the expedition Wegener constructed the first meteorological station in Greenland near Danmarkshavn, where he launched kites and tethered balloons to make meteorological measurements in an Arctic climatic zone. Here Wegener also made his first acquaintance with death in a wilderness of ice when the expedition leader and two of his colleagues died on an exploratory trip undertaken with sled dogs.
After his return in 1908 and until World War I, Wegener was a lecturer in meteorology, applied astronomy and cosmic physics at the University of Marburg. His students and colleagues in Marburg particularly valued his ability to clearly and understandably explain even complex topics and current research findings without sacrificing precision. His lectures formed the basis of what was to become a standard textbook in meteorology, first written In 1909/1910: Thermodynamik der Atmosphäre (Thermodynamics of the Atmosphere), in which he incorporated many of the results of the Greenland expedition.
On 6 January 1912 he publicized his first thoughts about continental drift in a lecture at a session of the Geologischen Vereinigung at the Senckenberg-Museum, Frankfurt am Main and in three articles in the journal Petermanns Geographischen Mitteilungen.
Post a Comment